
Web Presentation Layer Bootstrapping
for Accessibility and Performance

Clint Andrew Hall
Cerner Corporation

2800 Rockcreek Parkway
Kansas City, MO 64011

011 (816) 201-5045

clint.hall@cerner.com

ABSTRACT
In websites today, most browser incompatibilities are overcome
using detection by available client features or the user-agent. This
logic is often baked into JavaScript libraries client-side to limit
functionality, or clients are filtered server-side to redirect to
alternate versions of the site. In this paper, I present a technique
called the Web Bootstrapper, a technique that allows a developer
to write a single site while still providing multiple experiences, or
“skins,” without altering source or running costly client-side code.
It is a process by which an accurate collection of only those static
resources and metadata necessary for a unique experience be
delivered passively, by the most performant means possible. In
further contrast to existing methodologies, this approach
determines resources based on capability, form factor and
platform by targeting and collecting the often-immutable
attributes of the client, not specifically its identity or version.
Bootstrapping allows for rule-based, externalized, server-side
configuration, further promoting progressive enhancement and
client performance.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Portability.

H.5.2 [Information Systems and Presentation]: User Interfaces
– Theory and Methods.

General Terms
Algorithms, Performance, Human Factors, Theory.

Keywords
Web, User Interface, Web Browsers, Performance, Accessibility,
Cascading Styleheets, JavaScript
1. INTRODUCTION
The construction of the typical web page has changed
significantly (and for the better) over the last ten years. New and
more sophisticated user interface technologies and the availability

of higher bandwidth speeds have transformed the once rather
bland, text-based documents into entire experiences. Web
“pages” have now taken on the role of web “solutions,” entities
that can accept much more complex user input and thus respond
just as richly.

Yet this extremely rapid evolution has not come without cost.
Accessibility, or the consideration of those users with disabilities,
became secondary to the new visual and input requirements. [1]
Rapid development combined with intense competition among
countless web clients meant that these very fine-tuned pages
started to fall at the mercy of varying implementations. Further
complicating matters, the emergence of a broad range of alternate
form factors, such as mobile phones, has prompted a conditioned
user base to demand similar experiences to that of their desktops.
Performance, too, has become a concern, as these rich solutions
have begun to buckle under their own weight through the request-
response transaction model.
A vocal community of web developers began evangelizing a
return to semantic web content, combining it with a technique
known as graceful degradation [2]. In this approach, pages are
first designed for “A” grade browsers, or popular web clients with
common support of presentation technologies [3]. In this process,
more consideration is given to how the code would be interpreted
by clients without these technologies, providing alternative
decoration or behavior where necessary. Thus, older and lesser-
capable browsers are allowed degraded experiences that still
function.

More recently, developers have begun turning this trend on its
head, preferring the philosophy of progressive enhancement [4].
Under a progressive enhancement model, the web page is
constructed semantically, based on its content and regardless of its
visual end-state, resulting in a lowest-common-denominator,
extremely portable and accessible representation. Other
presentation layer technologies, such as Cascading Style Sheets
(CSS) or JavaScript, are then layered onto this structure,
enhancing the experience. At the very least, this allows a
developer to support accessibility with the base markup, quickly
and easily change the style of a page without altering that content,
and include corrections for particular browsers. Progressive
enhancement is thus a better approach than graceful degradation
because it does not take a “white list” means of providing
experiences to lesser-capable browsers; the base markup provides
an always-available, semantic view of the content.
In its commonly implemented forms, however, this approach,
while offering more benefits than graceful degradation, does not
go far enough; it does not effectively address performance or the
myriad of potential combinations of browsers and form-factors.
In fact, the more portable a document attempts to become, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

W4A2009 - Technical, April 20-21, 2009, Madrid, Spain. Co-Located
with the 18th International World Wide Web Conference.

Copyright 2009 ACM 978-1-60558-561-1...$5.00.

more metadata, CSS selectors and scripts unrelated to the desired
experience are downloaded and included in the document.
Indeed, many CSS and JavaScript frameworks consist a great deal
of compatibility code that is ignored unless applicable to that
particular browser, (and is thus wasted in those contexts). [5]
Older versions of browsers—considered a less-than-significant
demographic—are often ignored, allowing sites to fail visually
when the clients cannot interpret the CSS selectors and script
correctly.

There have been attempts to optimize the potentially excessive or
incompatible code. Server-side techniques use unreliable request
headers and can only make assumptions about client-side
capability. Client-side approaches push detection and inclusion
logic to the browser, often using the same unreliable request
header and rarely taking the form factor into account. Neither
process is configurable in and of itself, and both require changes
to source code when a new skin is created.
In computing, bootstrapping ("to pull oneself up by one's
bootstraps") refers to techniques that allow a simple system to
activate a more complicated system [6]. In this paper, I introduce
Web Bootstrapping, a process by which an accurate collection of
only those static resources and metadata necessary for a unique
experience be delivered passively, by the most performant means
possible. In further contrast to existing methodologies, this
approach determines resources based on capability, form factor
and platform by targeting and collecting the often-immutable
attributes of the client, not specifically its identity or version.
Bootstrapping allows for rule-based, externalized, server-side
configuration, further promoting progressive enhancement and
client performance. Individual presentation collections, or skins,
can be edited independently of each other, and new collections
can be added at run-time without changing any source code of the
document. The bootstrapper also supports on-demand resource
inclusion, (e.g. Ajax) with identical capability consideration. As
an added benefit, by virtue of being a server-side approach, this
process is also capable of concatenating static resource content
from remote sources, thereby avoiding cross-site scripting and
mixed-content warnings.

Using an implementation of this bootstrapping method, we have
been able to demonstrate several solutions with different skins
based on browser and device. In point of fact, we have yet to find
a web-enabled device incapable of displaying these bootstrapped
pages. We’ve also seen significant performance improvements in
our web solutions, and we continue to experiment with this
technique.

1.1 Background and Related Work
1.1.1 Semantic Markup
One of the most important philosophical shifts in web
development came with the return to the use of HTML as an
expressive markup language only [7]. Before the advent of CSS,
most documents had their visual appearance embedded into their
very structure. The release of the HTML 4 specification,
however, deprecated these visual tags in favor of those with a
defining nature; strong as opposed to bold and emphasis opposed
to italics, for example [8]. Pages built in ways that took
advantage of these meaningful tags thus became more meaningful
themselves, both to parsing algorithms—search engines, browsers
and screen readers—and to users. This also led to greater
flexibility using presentation layer technologies such as CSS and
JavaScript.

1.1.2 Flexing Presentation Layer Technologies
Cascading Style Sheets (CSS) and JavaScript were created for
developers to enhance the user experience of a web page,
preferably without altering the semantic content of the document.
Once web clients began supporting these technologies, web pages
took on a much more layered structure, one where the separation
of concerns—content, presentation and behavior—was becoming
obvious.

Yet the fact that different manufacturers implemented these
technologies in each web client meant there were bound to be
inconsistencies between them, (often despite the existence of
standards). Furthermore, the eventual demand for web clients on
other form factors, such as mobile phones, gaming platforms and
handheld devices, meant that the support of these presentation
layer technologies could vary greatly depending on conditions
such as bandwidth, memory, processing power, size, input
sources, haptic feedback, etc. To create a consistent experience in
such conditions, developers began to look for ways to flex the
presentation layer.

1.1.2.1 User-Agent Detection
An initial obvious answer was the use of the user-agent string, a
commonly populated header on the HTTP request identifying the
browser to the server. Unfortunately, the most common use of
this identifier by developers was to blacklist browsers from sites,
either because they believed the site would not appear properly, or
to promote the use of one client over another. The intense
competition between browser manufacturers combined with the
lack of any enforcement upon the validity of the user agent string
prompted both the inclusion of deceptive strings by vendors, as
well as the spoofing of these strings by users. Indeed, some web
browsers, such as the Opera Software’s Opera Web Browser,
allow the user to either spoof, or mask the user-agent string with
that of any other browser through easily accessible user
configuration. As a consequence of all of these factors,
identifying a client by its user agent string for the purposes of
flexing its content, presentation, or behavior became an
unreliable, discouraged practice [9].

1.1.2.2 CSS Media Typing
Standards bodies like the W3C gathered feedback from
manufacturers, developers and users, thus developing several
proposals, the most promising being media typing for CSS. In
this standard, developers could target either portions, or the entire
CSS document for a specific display type, such as handheld, print,
screen, TV, braille, etc. When implemented properly, within the
web client, these media types could omit or include certain
portions of CSS, presumably those that would be inappropriate for
the device.

Unfortunately, and almost expectedly, the implementation of
media type within different web browsers is a mixed. In some
cases, mobile browsers honor both handheld and screen media
types; some ignore handheld media types altogether. One
speculates this is due to a self-enforcing cycle: developers don’t
use them because devices don’t support them, thus devices don’t
support them because developers aren’t using them.

1.1.2.3 JavaScript Frameworks
In further effort to insulate developers from the various
inconsistencies between web clients, several JavaScript
frameworks have been developed and are used with some
prominence. Libraries such as jQuery [10], Dojo [11] and

Prototype [12] can be very useful, as they abstract away the
different implementations of common tasks such as object
manipulation and event handling, providing a unified set of
functions in a number of popular clients.

While helpful in many cases, these libraries have several
drawbacks. First, these libraries attempt to level the playing field
between the modern, the eccentric and the lesser capable of
browsers. Consequently, web clients are forced to download
compatibility code for the others, regardless of if it applies or not.
Further, these libraries are restrictive in that they only target a
finite set of web clients [13]; most don’t support mobile due to the
devices’ limited implementations of JavaScript.

When used thoughtfully, JavaScript frameworks can provide
quick, powerful access to most features of the browser. Care must
be taken to ensure that bandwidth and processing is not wasted
when the site is intended for a broader range of devices and
browsers.

1.1.3 Transcoding
Popular “turn-key” approaches for businesses wishing to adapt to
the mobile market and accessibility concerns often use
transcoding to deliver alternate markup of their existing site.

1.1.3.1 HTML Compression and Adaptation
One approach involves reformatting or compressing existing web
content into something more palatable to a smaller or less
powerful platform. By creating a set of intelligent rules, large
portions of “unnecessary” HTML content can be removed,
distilling information as accurately as possible. Several solutions
exist [14], both on the server and on the client, but each relies
upon complex logic to succeed.

1.1.3.2 SADIe
A more recent approach called “SADIe,” short for Structural-
Semantics for Accessibility and Device Independence [15], uses
the information contained in the CSS class names to develop a
structural ontology. Once loaded into an enabled client, the
ontology is read and the content transcoded, creating a more
accessible view of the page.

The approach relies on knowledge of the page structure and the
semantic web to create an appropriate ontology. While much
more effective than rule-based output transcoding, this approach
still relies on a set of rules to adapt the content, as well as a
knowledgeable architect to create the ontology.

1.1.4 Performance
Many web architects have realized the savings, both monetarily
and through performance, optimizing the web layer of their
solutions. Through the work of architects like Steve Souders [16],
a number of effective best practices have been and continue to be
identified [17]. Several of these, such as reducing the number of
HTTP requests, minifying JavaScript and externalizing resources,
can contribute significantly toward faster responses in the web
client.

Even the order by which resources are loaded can have a profound
effect on page completion times. It has been demonstrated that, in
some cases, JavaScript can in fact block entire page execution as
the script is interpreted [18]. Understanding the environment in
which these resources are downloaded, the effects of their
inclusion and the best means by which to incorporate them, will
continue to be pivotal in creating performant sites.

1.1.4.1 Cuzillion
Cuzillion is a recently released performance tool written by Steve
Souders [19]. This tool can be used to effectively evaluate
different resource load configurations in different browsers.
Cuzillion has been instrumental in determining the most effective
load configurations within the bootstrapper, and I encourage
readers to use it to evaluate their own scenarios.

1.2 Contribution of this work
The goals of the Web Bootstrapper project were as follows:

• Promote Progressive Enhancement and Accessibility;

• Target the capabilities of the client, not the identity of
the client alone, to deliver a defined experience;

• Support remote configuration;
• Support performance best practices;
• Allow for the collection of precise demographic data.

The remainder of this section will summarize how the
bootstrapper meets these goals. Section 2 will discuss the details
of the process. Section 3 will discuss the specific implementation
of the bootstrapper within our solutions. Section 4 will discuss
the real-world results of using this process in our solutions and
prototypes.

1.2.1 Expanding the Definition of Accessibility
Traditionally, accessible technology is defined as “[technology
that] can be used as effectively by people with disabilities as by
those without” [20]. Yet when we consider the portable nature of
the web, does this definition go far enough? Should anyone, with
or without physical disability, be compelled to have the most up-
to-date hardware and software to use a web site? Could such a
requirement be considered an economic or educational bias?

Considering this, the traditional definition of accessibility could
be expanded: “Technology is considered accessible if it can be
used as effectively by people with disabilities as by those without,
as well as by those with less-than-modern means.” Indeed,
progressive enhancement can ensure that the content of a site is
portable to any browser capable of negotiating an HTTP request
and parsing HTML. Flexing the presentation layer based on the
physical characteristics of the device, such as the size of the
screen, could certainly assist in delivering a more accessible
experience. Reducing the number of static resources downloaded
to only those absolutely required could also save bandwidth and
processing power, resources that come at a premium on devices
like mobile phones. Further, individuals with disabilities that
choose to disable JavaScript can avoid downloading resources
they do not require.

The bootstrapper enables alternate presentation experiences
through its methodology, thus more effectively supporting both
the traditional definition of accessibility as well as the expansion
offered above.

1.2.2 Web Client Agnostic Content
As demonstrated previously, the number of web clients and the
diversity of their features have contributed to a complicated
landscape for web developers to conquer. Thankfully, modern
desktop browsers vary more in their top-level features than they
do in rendering methodologies; some share rendering engines,
such as Gecko or WebKit, while most at least attempt to follow
standards consistently. When scaling down to mobile devices,

some engines, such as WebKit on the Apple iPhone, have been
able to do so effectively; other mobile browsers opt for a subset or
a new engine entirely.

When considering the depth of the browser market combined with
the breadth of available devices and platforms, User Agent
detection can be daunting, expensive and worse still, error-prone.
JavaScript and CSS frameworks have taken cross-browser
compatibility only so far; they primarily focus on the desktop and
do come with a cost.
Rather than interrogate the User Agent string, the bootstrapper
applies rules such as, “if the screen size is larger than 800x600,
deliver the following resources,” or, “if the client supports Java
and Adobe Flash, deliver the following script to inject
components.” Even proprietary means of version detection—such
as conditional comments in Internet Explorer—can be exploited
for rules processing.

The bootstrapper gives a developer reliable access to a host of
client-side information and can thus apply generic, intelligent and
performant rules to the delivery of resources.

1.2.3 Configuring Agile Flexibility
In many organizations, an operations team manages the
configuration and day-to-day maintenance of sites. As might be
expected, the operations team may not be as familiar with the
inner workings of the code, nor is it prudent to edit production
code directly. Therefore, it is very important that the development
team provide a fast, hands-off configuration mechanism before
the release. This is often accomplished through individual
configuration files.

Server-side configuration options for tasks such as caching,
preferences, data sources and the like can be very impressive; yet
the presentation layer has very little in terms of options. And, in
truth, why should it? The presentation layer of web solutions
should be fairly baked and final from release to release.

The trouble arrived as browser vendors, eager to appeal to
consumers in a Web 2.0 world, began to release new versions of
their software more often than before. With these new releases
came fixes for existing bugs, but also new features… often a
source for new bugs. Emerging devices with higher bandwidths
and better web capabilities began to appear, as did a savvier user
base expecting a harmonious, albeit entirely new, experience for
our solutions.

As our presentation layer resources are packaged with the other
code in the solutions, we began to struggle with the fact that we
could not certify and release code quickly enough to meet these
browser and device releases. Thankfully, with the separation of
presentation layer technologies from the semantic markup, these
skins have become much less brittle. At runtime, the bootstrapper
allows developers to create, repair or remove both the skins and
the rules that provide them without requiring a code release. This
gives us greater flexibility toward the browser landscape, as well
as agile reaction to any changes within it, all the while coexisting
effectively in our release cycles.

1.2.4 Improving Performance
The method by which static resources are included can have a
drastic effect on how quickly the page is loaded. The bootstrapper
assists by providing a configuration option to the inclusion of
static resources. It allows the developer to favor a particular
resource delivery preference—HTML, Network or Concurrency—

at runtime, thus the bootstrapper can adjust to the changing state
of the presentation layer and provide optimal performance.

1.2.5 Data Collection
Several tools exist today, such as Google Analytics, which collect
user demographics and provide analysis of visits to a site [21].
Much like the bootstrapper, these tools rely on a JavaScript
interrogation of the client followed by a transmission of this data
to the server.

Since the bootstrapper can perform this collection to determine
static resources, so too can it store and interpret these attributes
for the purposes of demographic analysis.

2. WEB BOOTSTRAPPER APPROACH
The following outlines in detail how the bootstrapper is set up and
how it executes to effectively deliver static resources and content.

2.1 Setup
The first step in using the bootstrapper is defining the unique
experiences to be delivered. These skins will be attributed to
entire collections of devices based on their attributes and
classified by the bootstrapper ruleset. Table 1 defines a sample
set of experiences.

Table 1. Sample set of Experience Definitions

Skin Description

Plain text Default skin, devoid of presentation or
behavior other than applied by the client.

Mobile Suitable for small screens; minor subset
of CSS, minimal script.

Desktop CSS 3, Javascript 1.5 compliant skin.

Each of these experiences has their own set of resource files and
metadata.

Second, the bootstrapper is provided a set of rules capable of
classifying clients based on their attributes. Using Table 1, we
can see that the most prominent rule is screen size, followed by
discerning the difference between WebKit and other mobile
devices. Figure 1 is a pseudo-code representation of a rule file
that could support the experiences in Table 1.

Figure 1. Pseudo-code Rule File

Third, each page within the solution includes a single JavaScript
include that triggers the bootstrapper. Optionally, the source URI
of this include can specify a bundle, a configuration key that

corresponds to a group of pages that share a set of resources. For
example, suppose several pages use the same set of resources
because they all deal with a similar topic, such as allergies. These
pages could then share the same bundle name, “allergies,” which
would direct the bootstrapper to deliver only those resources
necessary.
Finally, the resource delivery preference for the solution is
configured. A bootstrapper delivery preference defines how the
resources are loaded; the selection of the method depends on the
number and size of the resources as well as the requirements of
the HTML.

There are three preferences currently employed by the
bootstrapper: HTML, Network and Concurrency.

2.1.1 Favoring HTML
This mode of resource delivery is the least performant, but most
closely mimics how the resources are included at run time. In this
case, resources are written directly to the HEAD as the page is
interpreted. This can be slower, as HTML and other code
following these JavaScript elements are usually blocked as the
elements complete [22].

This methodology could be chosen in those cases where the
HTML contains JavaScript that relies on functionality included
before the load of the page is completed.

2.1.2 Favoring the Network
This mode of resource delivery is faster than the HTML method,
as it concatenates and delivers all specified JavaScript in one
network transfer. In addition, it adds inclusions via Document
Object Model (DOM) manipulation; this allows resources to be
downloaded concurrently.
This method assumes there does not exist any inline script within
the document that must be executed before the document finishes
loading. This method would also be preferred when there is very
little JavaScript to load, thus favoring the network by not firing
off any additional network traffic to load resources.

2.1.3 Favoring Concurrency
In some cases, the most performant method of resource delivery
favors concurrency. In this mode, the bootstrapper “phases”
resource loading using two passes. In the first pass, CSS and
metadata are added to the document, followed by an include
requesting the second pass. In the second pass, JavaScript is
added to the document. In this way, the presentation of the page
is handled first, followed by its behavior.

While involving an additional request to the server, this method
defers the processing of JavaScript to run concurrently with the
download of other resources. This can be extremely effective
when larger amounts of JavaScript are required.

2.2 Page Load Execution
Once the solution has been prepared, the bootstrapper process can
execute. Figure 2 provides a visual representation of the
bootstrapper methodology. The process executes as follows:

1. An HTML document is served with one static script include:

<script type=”text/javascript” src="/Bootstrap"
type="text/javascript"></script>

or, optionally:

<script type="text/javascript"
src="/Bootstrap?bundle=[bundleKey]"></script>

where ?bundle=[bundleKey] is an optional grouping
identifier.

2. The /Bootstrap URL references a server-side process which
delivers a configured bootstrapper JavaScript capability
detection object.

3. The bootstrapper object attempts to collect a number of
attributes from the client.

4. The bootstrapper object appends a SCRIPT tag to the HEAD,
resulting the following addition:

<script type="text/javascript"
src="/Bootstrap?r=1[&attribute=value...]>
</script>

where r=1 informs the server-side process the bootstrapper
object has gathered attributes and is ready to receive
resources.

5. The /Bootstrap URI maps to the server process, which then
passes the request parameters and the user-agent to a rules
engine.

6. A rule set is evaluated, resulting in a list of metadata, CSS
and JavaScript file paths to be returned to the client.

7. The process appends, in order, metadata, CSS and JavaScript
include script based on the configured favoritism. The
bootstrapper object interprets these calls, resulting in
additions to the document.

Figure 2. Bootstrapper Execution

2.2.1 The Bootstrapper Payload
The Bootstrapper JavaScript object is responsible for collecting,
transmitting and appending resources to the document. The object
can be implemented to look for any number of attributes to
transmit to the server-side process. The attributes collected from
the bootstrapper are output as SCRIPT elements, typically within
the HEAD. The script that arrives as a result of the bootstrapper

contains calls to its API that are responsible for appending
elements to the document.

2.2.2 Resource Collection
The server-side process is provided with a collection of paths of
resources from the rules engine. The resources can be local or
remote.

Local JavaScript resources can be concatenated together if they
are accessible from the process, (e.g. from a file stream). If not
found, the paths are output directly to the HEAD, and are thus
relative to the URI of the page. As they can contain references to
relative images, local CSS resources are always output relative to
the page URI.
Remote JavaScript resources can be concatenated with local
JavaScript resources if the server side process can support loading
these files via HTTP. This is particularly useful in order to avoid
cross-site scripting warnings, as the source of these files originate
within the domain of the solution, rather than remotely. As with
local CSS resources, remote CSS paths are output as specified.

2.2.3 Resource Delivery
As previously outlined, the bootstrapper currently supports three
resource delivery preferences. In each case, the bootstrapper
JavaScript object provides API methods for resource inclusion.

2.2.3.1 Favoring HTML
When favoring HTML, the JavaScript files found by the server
process are concatenated together and returned with the rules
engine result. Metadata, CSS file paths and the paths of
JavaScript files not available to the server are subsequently
written to the document using document.write. Since
document.write applies content to the document as it being
process, this method matches exactly how the document would be
interpreted if the includes were a part of the HEAD element
source.

2.2.3.2 Favoring the Network
When favoring the Network, the JavaScript is still returned with
the bootstrapper rules engine result, but following CSS and
metadata is appended to the HEAD with DOM manipulation. This
is done by creating elements, setting their properties and
appending them to the HEAD node.

2.2.3.3 Favoring Concurrency
When favoring concurrency, the bootstrapper rules engine result
only returns calls to append CSS and metadata to the HEAD, then a
single JavaScript element is appended to the HEAD which requests
the JavaScript portion.

2.2.4 Clients without JavaScript
The bootstrapper process will obviously not execute within clients
without at least rudimentary JavaScript support. While an
avoidance of any presentation-layer resources within these clients
would be recommended, it may be a requirement to have a base
CSS skin applied. In such cases, the bootstrapper could return a
simple CSS “reset” file—one that redacts incompatible selectors
by overwriting them. The same assumption could be applied to
metadata.

2.3 On-demand Execution
On-demand inclusion, or the loading of resources without a page
refresh, executes in much the same way as the on-load process.
The only exception to this is that the favoritisms do not come into

play; all resources are added to the HEAD using DOM
manipulation. This method can be used to further increase
performance by loading only that JavaScript and CSS necessary
for the result of a behavior. The bundle attribute can be used to
great effect in this use case.

3. IMPLEMENTATION
Our implementation of the bootstrapper uses Java as its language,
the J2EE container and JBoss Drools as the rules engine.

3.1 The Bootstrapper Payload
In our implementation, the bootstrapper payload has been
configured to gather and transmit the following attributes:

• Screen Height, (screen.height)
• Screen Width, (screen.width)
• IE Version, (if IE, using conditional comments)
• Color Depth, (screen.colorDepth)
• Java Enabled, (navigator.javaEnabled)
• Platform, (navigator.platform)
• Vendor, (navigator.vendor)

In most cases, these attributes are well supported, implemented as
immutable within the client, and are fairly reliable. The absence
of any attribute, however, need not halt execution; indeed, well-
implemented rules can interpret and handle such cases.

3.2 A Bootstrapper Servlet
The server-side component of the bootstrapper in our
implementation is a J2EE servlet. This servlet has access to any
local static resources on its CLASSPATH; this includes both
JARs and the web container itself. We have also implemented
remote resource access through the Apache HTTPClient. [23]

3.3 JBoss Drools Rules Engine
We chose to implement connect an instance of the bootstrapper
servlet to the JBoss Drools Rules Engine. [24] This enabled an
expressive, static file-based rules language that could be
externalized on the server and read at runtime.

3.4 Other POJOs
Several POJOs (plain old Java objects) were also created to
facilitate transfer of information between the servlet to the rules
engine.

4. RESULTS
We continue to apply and refine this technique. One of the
primary goals of this paper is to introduce the concept and
encourage vetting of its appropriateness. This section will detail
some of the specific results we have seen when using this
technique.

4.1 Supporting Multiple Experiences
At the 2008 Cerner Health Conference, we were able to
demonstrate a bootstrapper-enabled prototype called Activity
Tracking. The Activity Tracking prototype is Cerner's vision of
using connected devices, such as a pedometer, scale or glucose
monitor, to upload relevant biometric data to a consumer's health
record. [25]

The goal was to produce a prototype that could flex its look-and-
feel based on the device. Using the bootstrapper, four skins were

produced: plain-text, mobile, desktop and WebKit mobile. Figure
3 is a collection of screenshots from the Activity Tracking
solution.

Figure 3. Screenshots of Activity Tracking Skins (clockwise

from top: desktop, mobile WebKit, mobile)

4.2 Accessibility
The most obvious benefits to this approach are the accessibility
features inherently included. In order to bootstrap a site
effectively, the markup must be semantically constructed using
progressive enhancement. Only under these circumstances can
multiple experiences be created without refactoring. In doing so,
the developer ensures that those with lesser or assistive
technology can use the base site.

The bootstrapper can also be used to deliver skins with features
such as high-contrast, alternate color and/or alternate fonts based
on attributes gathered from the client. While some sites do offer
alternate stylesheets for this functionality, the bootstrapper can
apply these sheets without interaction from the user.

4.3 Performance
We’ve run several performance tests similar to those in Cuzillion.
These test results demonstrate just a few of the performance best
practices outlined by Souders; their inclusion here is intended to
demonstrate how the bootstrapper incorporates some of these
practices into its configuration.

In each example, particularly around Network and Concurrency
versus HTML, we’ve seen significant performance improvements

over loading through the bootstrapper, as opposed to loading
resources in-source.

4.3.1 Local Resources: Network vs. Concurrency
When loading local resources, the Network delivery preference
loads a concatenation of JavaScript code upfront. The
Concurrency preference, however, favors a second pass for the
concatenated JavaScript appended to the HEAD. In this test, the
bootstrapper JavaScript resource load is delayed five seconds to
simulate a large or delayed JavaScript file.
In Figure 4, the bootstrapper is using the Network load preference.
Notice that the JavaScript is concatenated into the rules engine
response, and due to its size, it blocks the page.

Figure 4. Loading Local Resources Favoring the Network

In Figure 5, however, an additional network transaction is
appended to the HEAD to load the JavaScript. Notice that the
excessive script does not block the page content and CSS.

Figure 5. Loading Local Resources Favoring Concurrency.

While the difference in load time is negligible, the CSS is being
blocked when using the Network load preference. As a result, the
presentation of the page “freezes” while the script is loaded.

4.3.2 Remote Resources: HTML vs. Concurrency
When loading remote resources, the HTML and Concurrency
resource delivery preferences showed the greatest contrast. In this
test, three remote CSS files and three remote JavaScript files were
loaded, each with a delayed load time of one, two and three
seconds, respectively.
The HTML loading method simulates precisely the effects of
including the resource tags within the HEAD element. In Figure
6, we can clearly see the later JavaScript includes blocking as they
are interpreted, contributing to a total load time of 8.5 seconds.

Figure 6. Loading Remote Resources Favoring HTML

In Figure 7, the concurrency model allows the same JavaScript to
be loaded concurrently with the CSS files, reducing the load time
to 3.3 seconds. Notice how the JavaScript file transactions are not
blocking; the one, two and three second files are loaded
concurrently, resulting in a significant improvement in load time.

Figure 7. Loading Remote Resources Favoring Concurrency

4.4 Logging
The bootstrapper currently, through our internal logging
methodologies, collects statistics on the web clients accessing the
bootstrapper at any given time. Figure 8 is an example of the
bootstrapper logging client attributes.

Figure 8. Sample Console Output for a Network Request

5. FUTURE WORK
The purpose of this paper was to outline the current state of both
the problem and the solution the bootstrapper proposes. There are
several directions for further study, including:

• Incorporation of further presentation layer best
practices;

• Exploration of other resource delivery preferences;

• Incorporation of a threaded HTTPClient for remote
resource inclusion;

• Configuration of resource delivery preference per
resource transaction.

I sincerely encourage questions and feedback on the Web
Bootstrapper. We will continue to expand and experiment with it
to further explore its potential.

6. ACKNOWLEDGEMENTS
My sincerest thanks go to the management and associates of
Cerner for their support of this project. Many thanks also to Steve
Souders for his impressive contribution in knowledge and tools to
the web performance space.

7. REFERENCES
[1] WebAIM. Introduction to Web Accessibility

http://www.webaim.org/intro/
[2] The Web Standards Project (WASP). Manifesto – The Web

Standards Project
http://www.webstandards.org/action/dstf/manifesto/

[3] Yahoo, Inc. Yahoo! UI Library: Graded Browser Support
http://developer.yahoo.com/yui/articles/gbs/

[4] Wikipedia. Progressive Enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement

[5] Gilzow, Paul. 2008 Javascript Frameworks. Interface: the
Official Blog of Web Communications at the University of
Missouri. http://interface.missouri.edu/2008/04/javascript-
frameworks.php

[6] Wikipedia. Bootstrapping
http://en.wikipedia.org/wiki/Bootstrapping

[7] Shea, Dave. css Zen Garden: The Beauty of CSS Design
http://www.csszengarden.com/

[8] W3C. 1999 HTML 4.01 Specification. Section 15:
Alignment, font styles and horizontal rules in HTML
documents. http://www.w3.org/TR/REC-
html40/present/graphics.html

[9] Koch, Peter Paul. The dangers of browser detects
http://www.quirksmode.org/blog/archives/2006/08/the_dang
ers_of.html

[10] jQuery http://www.jQuery.com/
[11] Dojo http://www.dojotoolkit.org/
[12] Prototype http://www.prototypejs.org/
[13] jQuery. Browser Compatibility

http://docs.jquery.com/Browser_Compatibility

[14] Wikipedia. Mobile HTML Transcoders
http://en.wikipedia.org/wiki/Mobile_browser -
Mobile_HTML_transcoders

[15] S. Harper, S. Bechofer, D. Lunn. SADIe: Transcoding based
on CSS. In ASSETS’06, October 22–25, 2006, Portland,
Oregon, USA.

[16] Souders, Steve. http://www.stevesouders.com/

[17] Souders, Steve. High Performance Web Sites
http://stevesouders.com/hpws/rules.php

[18] Souders, Steve. High Performance Web Sites, Part 2
http://www.stevesouders.com/blog/2008/04/30/high-
performance-web-sites-part-2/

[19] Cuzillion. Help and about
http://stevesouders.com/cuzillion/help.php

[20] Thatcher, Jim. Web Accessibility – Section 508
http://jimthatcher.com/webcourse1.htm

[21] Google Analytics. http://www.google.com/analytics/

[22] Souders, Steve. High Performance Websites, Rule 6, Sample
5. http://stevesouders.com/hpws/js-blocking.php

[23] Apache Software. Jakarta Commons HttpClient
http://hc.apache.org/httpclient-3.x/

[24] JBoss. JBoss Drools http://www.jboss.org/drools/

[25] Cerner Corporation. Cerner Demontrations
https://www.cernerdemos.com

